substract 2D size of 2D triangle from 3D size of 3D triangle Saegon Grade: (√((a[x]-b[x])²+(a[y]-b[y])²+(a[z]-b[z])²))-(√((a[x]-b[x])²+(a[y]-b[y])²)) Loose reduction Sg=√(a²x²-2abx²+b²x²+a²y²-2aby²+b²y²+a²z²-2abz²+b²z²) Sg=√(ax-2a(bx²)+ay-2a(by²)+az-2a(bz²))² Sg=ax-2ax²b+ay-2aby²+az-2abz² Sg=a(x-2x²b+y-2by²+z-2bz²) Sg=ax-2ax²b+ay²aby²+az²abz² Sg=ax-2ax²b+a²by^4+a²bz^4 Sg=a(x-2x²b+aby^4+abz^4) Sg=ax-2ax²b+a²by^4+a²bz^4 Sg=a(x-2x²b+(aby+abz^4)^8) Sg=ax-2ax²b+a(aby+abz^4)^8 Sg=ax-2ax^2b+a(aby+abz^4)^8 Sg=(ax-2ax*ba(aby+abz))*16 Sg=(-2ax+ab^2(ax)(2ab(yz)))*16 Sg=-2^2*2+ax^2+ab(yz)*16 Sg=ô+ax²+ab*yz*16 Sg=ô+ax²+abyz16 Loose substitution where ô=-2^2*2+2 where î = ax where ¤ = zbxcy where -¼ = -1/4 or where -¼ = -1^/4 (inverse negative exponent) or -¼ = -1/(4^-4^-4) ================== One Grade Formula: Og=ôî+¤-¼ ================== Expanded out: Og=-2^2*2+2ax+(zbxcy)*-1/(4^-4^-4)